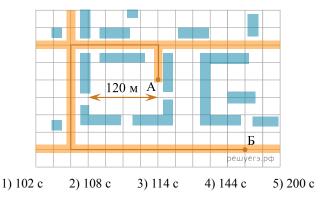
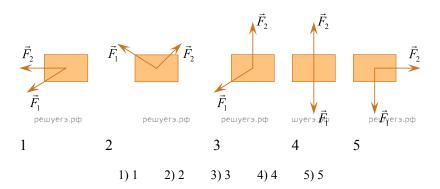

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

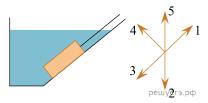
1. На рисунке представлен график зависимости координаты x тела, движущегося вдоль оси Ox, от времени t. Тело находилось в движении только в течение промежутка(-ов) времени:



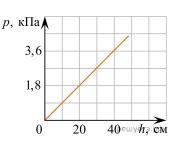
1) (4; 6) c 2) (0; 1) c, (3; 6) c 3) (0; 1) c, (3; 4) c 4) (0; 4) c 5) (3; 6) c


2. В момент времени $\Delta t = 0$ с звуковой сигнал был послан гидролокатором корабля вертикально вниз и, отразившись от дна моря, вернулся обратно в момент времени $t_2 = 2.9$ с. Если модуль скорости звука в воде $\upsilon = 1.5$ км/с ,то глубина H моря под кораблём равна:

3. Если средняя путевая скорость движения автомобиля из пункта A в пункт Б $\langle \upsilon \rangle = 23,0$ км/ч (см.рис.), то автомобиль находился в пути в течение промежутка времени Δt равного:


Примечание: масштаб указан на карте.

4. К телу приложены силы \vec{F}_1 и \vec{F}_2 , лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение a тело приобретет в ситуации, обозначенной на рисунке цифрой:

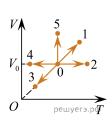


5. На дно водоёма с помощью троса равномерно опускают каменную плиту (см. рис.). Направление силы трения скольжения, действующей на плиту, показано стрелкой, обозначенной цифрой:

1) 1 2) 2 3) 3 4) 4 5) 5

6. На рисунке изображён график зависимости гидростатического давления p от глубины h для жидкости, плотность ρ которой равна:

1) 1,2 $\frac{\Gamma}{\text{cm}^3}$ 2) 1,1 $\frac{\Gamma}{\text{cm}^3}$ 3) 1,0 $\frac{\Gamma}{\text{cm}^3}$ 4) 0,90 $\frac{\Gamma}{\text{cm}^3}$ 5) 0,80 $\frac{\Gamma}{\text{cm}^3}$

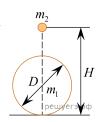

7. В Международной системе единиц (СИ) удельная теплоёмкость вещества измеряется в:

1) Дж 2)
$$\frac{\cancel{\square}\cancel{ж}}{\cancel{K}}$$
 3) $\frac{\cancel{\square}\cancel{ж}}{\cancel{K}\Gamma}$ 4) $\frac{\cancel{\square}\cancel{ж}}{\cancel{K}\Gamma \cdot \cancel{K}}$ 5) \cancel{K}

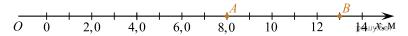
8. При изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа изменилось от $p_1=120~{\rm k\Pi a}$ до $p_2=160~{\rm k\Pi a}$. Если начальная температура газа $T_1=300~{\rm K},$ то конечная температура T_2 газа равна:

1) 330 K 2) 350 K 3) 390 K 4) 400 K 5) 420 K

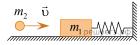
9. На V—Т диаграмме изображены пять процессов с идеальным газом, масса которого постоянна. При постоянной плотности ρ давление газа p увеличивалось в процессе:



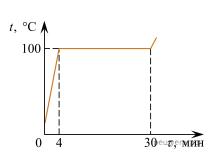
1) 0-1 2) 0-2 3) 0-3 4) 0-4 5) 0-5


10. Единицей напряженности электростатического поля в СИ, является:

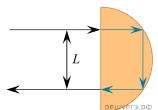
1) 1 Φ 2) 1 Γ_H 3) 1 A 4) 1 B/_M 5) 1 O_M


- 11. При изобарном нагревании внутренняя энергия идеального одноатомного газа, количество вещества которого постоянно, увеличилась на $\Delta U_1 = 180$ Дж. Затем газу изотермически сообщили количество теплоты $Q_2 = 200$ Дж. В результате двух процессов силой давления газа была совершена работа A, равная ... Дж.
- 12. На горизонтальной поверхности лежит однородный шар диаметром D = 1.0 м и массой $m_1 = 1.0$ т. Над центром шара расположено небольшое тело на высоте H = 1,5 м от горизонтальной поверхности (см. рис.). Если модуль силы гравитационного притяжения, действующей на тело со стороны шара, F = 1,4 мкH, то масса m_2 тела равна ... кг.

13. Бруску, находящемуся на шероховатой горизонтальной поверхности, ударом сообщили скорость \vec{v}_0 по направлению оси Ox. Если скорость бруска в точке A равна $\vec{v}_A = \frac{3\vec{v}_0}{4}$, а в точке B скорость бруска $\vec{v}_B = \frac{\vec{v}_0}{2}$ (см. рис.), то точка, в которой брусок находился в момент удара, имеет координату x_0 , равную ... дм.

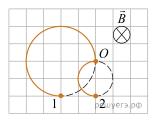


14. На гладкой горизонтальной поверхности лежит брусок массой $m_1=52$ г, прикрепленный к стене невесомой пружиной жесткостью m_2 \ddot{v} $k=52\ rac{{
m H}}{{
m M}}$ (см.рис.). Пластилиновый шарик массой $m_2=78\ {
m \Gamma},$ летящий го-


ризонтально вдоль оси пружины со скоростью, модуль которой $\upsilon = 2,0$ $\frac{\mathrm{M}}{c}$, попадает в брусок и прилипает к нему. Максимальное сжатие пружины $|\Delta l|$ равно ... мм.

- **15.** По трубе, площадь поперечного сечения которой $S=5,0\,\,\mathrm{cm}^2,$ со средней скоростью $\langle \upsilon \rangle =$ 9,0 м/с перекачивают идеальный газ ($M = 44 \cdot 10^{-3}$ кг/моль), находящийся под давлением p = 400 кПа при температуре T = 290 K. Через поперечное сечение трубы проходит газ массой m = 40 кг за промежуток времени Δt , равный ... **мин**.
- **16.** В теплоизолированный сосуд, содержащий $m_1 = 50$ г льда ($\lambda = 330$ кДж/кг) при температуре плавления $t_1 = 0$ °C, влили воду ($c = 4.2 \ 10^3 \ Дж/(кг$ °C)) массой $m_2 = 33 \ г$ при температуре $t_2 = 50$ °C. После установления теплового равновесия масса m_3 льда в сосуде станет равной ... г.
- 17. К открытому калориметру с водой ($L=2,26 \frac{\text{М/Дж}}{\text{K}\Gamma}$) ежесекундно подводили количество теплоты Q = 58 Дж. На рисунке представлена зависимость температуры t воды от времени τ . Начальная масса m воды в калориметре равна ... r.

18. Узкий параллельный пучок света падает по нормали на плоскую по-


верхность прозрачного
$$\left(n=\frac{4}{3}\right)$$
 полуцилиндра радиусом $R=3\sqrt{3}$ см

выходит из неё параллельно падающему пучку света (см. рис.). Если от момента входа в полуцилиндр до момента выхода из него потери энергии пучка не происходит, то минимальное расстояние L между падающим и выходящим пучками света равно...см.

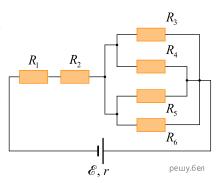
Примечание. Полуцилиндр — это тело, образованное рассечением цилиндра плоскостью, в которой лежит его ось симметрии.

- **19.** В сосуде объёмом $V = 2,0 \text{ м}^3$ при некоторой температуре t находится воздух, относительная влажность которого $\phi = 75\%$. Если при температуре t плотность насыщенного водяного пара $ho_{\rm HII}=22~rac{\Gamma}{M^3},$ то масса m водяного пара в сосуде равна ... г.
- **20.** Два иона (1 и 2) с одинаковыми заряди $q_1 = q_2$, вылетевшие одновременно из точки O, равномерно движутся по окружностям под действием однородного магнитного поля, линии индукции \vec{B} которого перпендикулярны плоскости рисунка. На рисунке показаны траектории этих частиц в некоторый момент времени t_1 . Если масса первой частицы $m_1=12~\mathrm{a.e.m.},$ то масса второй частицы m_2 равна ... а. е. м.

21. Квадратная рамка изготовлена из тонкой однородной проволоки. Сопротивление рамки, измеренное между точками A и B (см. рис.), $R_{AB}=0.50$ Ом. Если рамку поместить в магнитное поле, то при равномерном изменении магнитного потока от $\Phi_1 = 176 \; \mathrm{mBf}$ до $\Phi_2 = 80 \; \mathrm{mBf}$ через поверхность, ограниченную рамкой, за время $\Delta t = 500 \,\mathrm{MC}$ сила тока I в рамке будет равна ... мА.

- **22.** На дифракционную решетку, каждый миллиметр которой содержит число N = 400 штрихов, падает нормально параллельный пучок монохроматического света. Если максимум пятого порядка отклонен от перпендикуляра к решетке на угол $\theta = 30.0^{\circ}$, то длиной световой волны λ равна ... нм.
- **23.** Маленький заряженный шарик массой m = 4.0 мг подвешен в воздухе на тонкой непроводящей нити. Под этим шариком на вертикали, проходящей через его центр, поместили второй маленький шарик, имеющий такой же заряд $(q_1 = q_2)$, после чего положение первого шарика не изменилось, а сила натяжения нити стала равной нулю. Если расстояние между шариками r = 30 см, то модуль заряда каждого шарика равен ... нКл.
- 24. Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D = 8.0 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l = 4,1 м, движущегося на расстоянии d = 2,0 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t = 3.0$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите а сантиметрах в секунду.

25. Сила тока в резисторе сопротивлением R = 16 Ом зависит от времени t по закону I(t) = B + Ct, где B = 6.0 A, $C = -0.50 \frac{A}{C}$. В момент времени $t_1 = 10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.

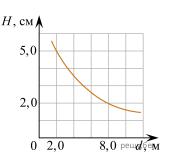

26. Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.


28. Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H},$ то модуль индукции B магнитного поля равен ... мТл.

29. В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0,20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1,0\cdot 10^4\ \frac{\mathrm{pag}}{\mathrm{c}},$ то ёмкость C конденсатора равна ... мк Φ .

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

